
SimEvents®

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® Getting Started Guide
© COPYRIGHT 2005–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 First printing Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Second printing Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)

Introduction
1

SimEvents Product Description . 1-2
Key Features . 1-2

Discrete-Event Simulation in Simulink Models 1-3

Related Products . 1-5
Information About Related Products . 1-5
Limitations on Usage with Related Products 1-5

What Is an Entity? . 1-7

What Is an Event? . 1-9
Overview of Events . 1-9
Viewing Events . 1-9
Actions for Events . 1-10
Event Actions Assistant for Events . 1-10

Run Sample Models . 1-14
Examine Entities and Ports in a Model 1-14
Entity Appearance . 1-16
Run the Simulation . 1-16

SimEvents Common Design Patterns 1-18

Build Simple Models with SimEvents Software
2

Build a Discrete-Event Model . 2-2
Open a Model and Library . 2-2

v

Contents

Move Blocks into the Model Window . 2-3
Configure Blocks . 2-4
Connect Blocks . 2-7
Run the Simulation . 2-7

Explore Simulation Results Using Plots 2-10
Explore the D/D/1 System Using Plots 2-10
Visualize and Animate Simulations 2-12
Explore the System Using the Simulink Simulation

Stepper . 2-13
Information About Race Conditions and Random Times 2-13

Key Concepts in SimEvents Software
3

Role of Entities in SimEvents Models . 3-2
Meaning of Entities in Different Applications 3-2
Vary the Interpretation of Entities . 3-2
Data and Entities . 3-3
Data and Signals . 3-3
Introduction to Time-Based Entities . 3-3
Role of Attributes in Models . 3-3
Create Entities . 3-4

Role of Entity Ports and Paths . 3-9
Entity Ports and Paths . 3-9
Definition of Entity Paths . 3-9
Implications of Entity Paths . 3-10
Designing Paths Using Input, Output, and Entity Combiner

Blocks . 3-11

Storage . 3-13
Queues and Servers . 3-13
Behavior and Features of Queues . 3-13
Physical Queues and Logical Queues 3-14
Queue Policies . 3-14
Storage Actions . 3-14
Behavior and Features of Servers . 3-16
What Servers Represent . 3-16
Common Server Use Cases . 3-17

vi Contents

Constructs Involving Queues and Servers 3-17
Broadcast Entities Using Multicast Mode 3-18
Entity Resources . 3-20

Write Events Actions . 3-22

Inspect Statistics
4

Statistics Through SimEvents Blocks . 4-2

Count Entities . 4-5
Count Departures Across the Simulation 4-5
Count Departures per Time Instant . 4-5
Reset a Counter upon an Event . 4-5
Associate Each Entity with Its Index 4-6

Create Discrete Event Systems Using MATLAB and
Stateflow Software

5
Custom Discrete Event Systems . 5-2

Simulate Multidomain Models
6

Simulate a Hybrid System . 6-2
SimEvents Part of Model . 6-2
Simulink Part of Model . 6-3
Run the Hybrid Model . 6-4
Event-Based and Time-Based Dynamics in the Simulation . . . 6-5

vii

Selected Bibliography
7

viii Contents

Introduction

• “SimEvents Product Description” on page 1-2
• “Discrete-Event Simulation in Simulink Models” on page 1-3
• “Related Products” on page 1-5
• “What Is an Entity?” on page 1-7
• “What Is an Event?” on page 1-9
• “Run Sample Models” on page 1-14
• “SimEvents Common Design Patterns” on page 1-18

1

SimEvents Product Description
Model and simulate discrete-event systems

SimEvents provides a discrete-event simulation engine and component library for
analyzing event-driven system models and optimizing performance characteristics such
as latency, throughput, and packet loss. Queues, servers, switches, and other predefined
blocks enable you to model routing, processing delays, and prioritization for scheduling
and communication.

With SimEvents, you can study the effects of task timing and resource usage on the
performance of distributed control systems, software and hardware architectures, and
communication networks. You can also conduct operational research for decisions related
to forecasting, capacity planning, and supply-chain management.

Key Features
• Discrete-event simulation engine for multidomain system models
• Entities with custom data attributes representing tasks, packets, and items
• Blocks for queuing, service, routing, resource management, multicasting, replication,

and batching
• Statistics generation for delay, throughput, average queue length, and other metrics
• Library authoring with MATLAB® or Stateflow® for custom schedulers, hardware

and software constructs, and communication channels
• Block diagram animation and inspection for visualizing model operation and

debugging
• Custom animation creation for monitoring entities and events

1 Introduction

1-2

Discrete-Event Simulation in Simulink Models
SimEvents software incorporates discrete-event system modeling into the Simulink time-
based framework, which is suited for modeling continuous-time and periodic discrete-
time systems. In time-based systems, state updates occur synchronously with time. By
contrast, in discrete-event systems, state transitions depend on asynchronous discrete
incidents called events. Some examples illustrate these differences:

• Suppose that you are interested in how long the average airplane waits in a queue for
its turn to use an airport runway. However, you are not interested in the details of
how an airplane moves once it takes off. You can use discrete-event simulation in
which the relevant events include:

• The approach of a new airplane to the runway
• The clearance for takeoff of an airplane in the queue

• Suppose that you are interested in the trajectory of an airplane as it takes off. You
would probably use time-based simulation because finding the trajectory involves
solving differential equations.

• Suppose that you are interested in how long the airplanes wait in the queue. Suppose
that you also want to model the takeoff in some detail instead of using a statistical
distribution during runway usage. You can use a combination of time-based
simulation and discrete-event simulation, where:

• The time-based aspect controls details of the takeoff
• The discrete-event aspect controls the queuing behavior

In a Simulink model, you typically construct a discrete-event system by adding various
blocks, such as generators, queues, and servers, from the SimEvents block library. These
blocks are suitable for producing and processing entities, which are abstractions of
discrete items of interest. Examples of entities are packets within a communication
network, planes on a runway, or trains within a signaling system. Asynchronous events
that correspond to motion and changes in entity attributes through the system model
update the states of the underlying system. Examples of states are lengths of queues or
service time for an entity in a server.

One or more discrete-event systems can coexist with time-based systems in a Simulink
model. This coexistence facilitates the simulation of sophisticated hybrid systems. You
can pass signals from time-based components/systems to and from discrete-event
components/systems modeled with SimEvents blocks. The combination of time- and
event-based modeling facilitates the simulation of large-scale systems that incorporate

 Discrete-Event Simulation in Simulink Models

1-3

smaller subsystems from multiple environments. An example of a large-scale system
might have physical modeling for continuous-time systems, such as electrical systems,
which communicate via a channel modeled as a discrete-event system. A Simulink model
can also contain a purely discrete-event system with no time-based components when
modeling event-based processes. These systems are common in models that represent
logistic and manufacturing systems.

See Also

Related Examples
• “Simulate a Hybrid System” on page 6-2

More About
• “SimEvents Product Description” on page 1-2

External Websites
• Tech Talks: Understanding Discrete-Event Simulation

1 Introduction

1-4

https://www.mathworks.com/videos/series/understanding-discrete-event-simulation.html

Related Products
In this section...
“Information About Related Products” on page 1-5
“Limitations on Usage with Related Products” on page 1-5

Information About Related Products

See Related Products (http://www.mathworks.com/products/simevents/
related.html)..

Limitations on Usage with Related Products

Code Generation

SimEvents blocks do not support code generation using the Simulink Coder™ product in
version 5.0 (R2016a). Before version 3.1.2 (R2010a), SimEvents blocks offered limited
code generation support for rapid simulation. Since version 4.0 (R2011b), SimEvents
blocks do not support code generation using the Simulink Coder product. Support for
rapid simulation was removed because the improvements in normal model simulation
performance for SimEvents models matched or surpassed the performance of rapid
simulation in releases before version 4.0.

Simulation Modes

SimEvents blocks do not support simulation using the Rapid Accelerator, Accelerator,
Processor-in-the-Loop (PIL), or External mode.

Model Reference

SimEvents blocks cannot be in a model that you reference through the Model block.

See Also

Related Examples
• “Simulate a Hybrid System” on page 6-2

 Related Products

1-5

http://www.mathworks.com/products/simevents/related.html
http://www.mathworks.com/products/simevents/related.html

More About
• “SimEvents Product Description” on page 1-2
• “Discrete-Event Simulation in Simulink Models” on page 1-3

1 Introduction

1-6

What Is an Entity?
Discrete-event simulations typically involve discrete items of interest. By definition,
these items are called entities in SimEvents software. Entities can pass through a
network of queues, servers, gates, and switches during a simulation. Entities can carry
data, known in SimEvents software as attributes.

In a SimEvents model, where there are SimEvents blocks and Simulink blocks, the badge
 denotes the transition between time-based and event-based behavior. (A badge is

an icon the software uses to flag issues or transitions.)

These storage blocks hold entities as they move through a model:

• Entity generators
• Queues
• Servers
• Terminators

Note Entities are not the same as events. Events are instantaneous discrete incidents
that change a state variable, an output, and/or the occurrence of other events. See “What
Is an Event?” on page 1-9 for details.

The table shows examples of entities in sample applications.
Context of Sample Application Entities
Airport with a queue for runway access Airplanes waiting for access to runway
Communication network Packets, frames, or messages to transmit
Bank of elevators People traveling in elevators
Conveyor belt for assembling parts Parts to assemble
Computer operating system Computational tasks or jobs

A graphical block can represent a component that processes entities, but entities
themselves do not have a graphical representation. When you design and analyze your
discrete-event simulation, you can choose to focus on:

• The entities themselves. For example, what is the average waiting time for a series of
entities entering a queue?

 What Is an Entity?

1-7

• The processes that entities undergo. For example, which step in a multistep process
(that entities undergo) is most susceptible to failure?

Note SimEvents entities are fundamentally the same as Stateflow messages.

See Also
Entity Generator

Related Examples
• “Inspect Structures of Entities”

More About
• “What Is an Event?” on page 1-9
• “Role of Entities in SimEvents Models” on page 3-2

1 Introduction

1-8

What Is an Event?

In this section...
“Overview of Events” on page 1-9
“Viewing Events” on page 1-9
“Actions for Events” on page 1-10
“Event Actions Assistant for Events” on page 1-10

Overview of Events

In a discrete-event simulation, an event is an observation of an instantaneous incident
that may change a state variable, an output, and/or the occurrence of other events.
Events can correspond to changes in the state of an entity.

Typical Event Sequences

Specify event actions based on entity status. A typical event sequence in a SimEvents
model is:

1 The generation of an entity.
2 The advancement of an entity from an Entity Generator block to an Entity Server

block.
3 The completion of service on an entity in a server.
4 The exit of an entity from one Entity Server block to an Entity Terminator block.
5 The destruction of an entity.

Viewing Events

Events do not have a graphical representation. However, you can associate actions with
events as described in “Actions for Events” on page 1-10. The SimEvents software
maintains an event calendar with which you can interact using
simevents.SimulationObserver methods. You can create a custom event observer
using this class and its methods. For more information, see “Interface for Custom
Visualization”.

 What Is an Event?

1-9

Actions for Events

SimEvents lets you create custom actions to happen when an event occurs for an entity.
Every event can have a corresponding action. You can write actions for many events
using MATLAB code or Simulink Functions.

Event Actions Assistant for Events

SimEvents lets you select from a list of statistical distributions that generate template
code for simulating stochastic event actions. Also, you can automatically generate
MATLAB code that allows for simulating repeated sequences of event actions.

1 Open a new model and add the Entity server block from the SimEvents library.

2 In the block dialog box, from the Insert pattern list, select Repeating sequence
or Random number if you want to insert event action code from a template.

1 Introduction

1-10

 What Is an Event?

1-11

• Repeating sequence allows you to:

• Fix the sequence by settingSequence value
• Select a Output after the final value of the sequence toRepeat, Set to

zero, or Set to infinity
• Select a variable to Assign output to

• Random number allows you to:

• Provide an initial value to the random generator engine by setting the Seed
• Select Distribution to select from a list of statistical distributions
• Select a variable to Assign output to

1 Introduction

1-12

3 Code is automatically generated in the block dialog box

See Also
Discrete Event Chart | Entity Generator | Entity Queue | Entity Server | Entity
Terminator | MATLAB Discrete Event System | Multicast Receive Queue | Resource
Acquirer

More About
• “Events and Event Actions”

 See Also

1-13

Run Sample Models
In this section...
“Examine Entities and Ports in a Model” on page 1-14
“Entity Appearance” on page 1-16
“Run the Simulation” on page 1-16

One way to become familiar with the basics of SimEvents models and the way they work
is to examine and run a previously built model. See SimEvents Examples for these
examples.

Examine Entities and Ports in a Model
The seExampleTankFilling model illustrates entity and statistics output lines.

A thick double arrow line indicates the flow of entities.

1 Introduction

1-14

matlab:demo simulink simevents
matlab:open_system('seExampleTankFilling')

The report of statistics is an important part of the SimEvents blocks. Various SimEvents
blocks can report statistics such as:

• Number of entities departed
• Number of entities in the block
• Number of pending entities

When you request a statistic for a block, the output ports for the block extend from the
top of the block, with a label for each port. Here is an example of an Entity Terminator
block displaying the number of entities arrived (a).

To examine a statistic, you can connect the line to a Simulink scope.

Note You can also examine the path of entities using the Message Viewer by inserting a
Message Viewer block in your model.

Entity Connections

Some blocks in this model can process entities, discussed in the “What Is an Entity?” on
page 1-7 section.

The Entity Generator block and the Entity Queue block, which are part of the SimEvents
library set, process entities in this model. Each of these blocks has an entity input port
and an entity output port. The figure shows the entity output port of the Entity
Generator block and the entity input port of the Entity Queue block.

A thick double arrow line indicates the flow of entities.

Entity connection lines represent relationships between two blocks (or between their
entity ports) by indicating a path by which an entity can:

 Run Sample Models

1-15

• Depart from one block
• Arrive simultaneously at a subsequent block

When you run the simulation, entities that depart from the output port arrive
simultaneously at the input port.

You cannot branch an entity connection line. If your application requires an entity to
arrive at multiple blocks, use the Entity Replicator block to create copies of the entity. In
addition, you can route entities using the input and output switch blocks

Data Connections

A SimEvents model can also use a signal line that represents persistent value-based data
such as statistics and states. This line looks like a typical Simulink signal line. Such
signals have no associated events and event actions.

Entity Appearance

Entities do not appear explicitly in the model window. However, you can gather
information about entities using Simulink scopes.

Run the Simulation

To run the seExampleTankFilling simulation, choose Simulation > Run from the
model window.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Simulate a Hybrid System” on page 6-2

1 Introduction

1-16

More About
• “SimEvents Common Design Patterns” on page 1-18

 See Also

1-17

SimEvents Common Design Patterns
The SimEvents library provides design patterns that you can refer to while modeling. To
access these patterns, open the SimEvents library and double-click the Design Patterns
block.

Consider these design patterns while modeling:
Design Pattern Description Input

Specifications
Output
Specifications

Application

Entities with
exponential
random arrival
times

Generates
entities with
random interval
time in
exponential
distribution
fashion.

Not applicable

Structured
entity with
specified
attributes

Model:

• Customers
entering a
store

• Incoming
phone calls of
a hotline

1 Introduction

1-18

Design Pattern Description Input
Specifications

Output
Specifications

Application

Service time
from random
distribution

Specifies
waiting time in
the Entity
Server as a
random number
uniformly
distributed from
0 through 1.

Any entity type Inherited from
the input

Model:

• Extension of
an event that
is random
within a
range (for
example,
length of a
call

• Purposeful
holding of an
entity for a
random time

Extract
attributes of
entities as
signals

Extracts one or
more attributes
of entities as
signals.

A structured
entity or bus
object with
specified
attribute

getAttribute
— Real double
scalar signal

Extracted
Attribute —
Inherited from
the input

Inspect or use a
specific entity
attribute

Timestamp
entities upon
generation

Generates
entities with an
attribute
TimeStamp
that records the
simulation time
upon generation.

Not applicable Structured
entity with
attributes Data
and TimeStamp

Use when
generation time
of entities is
needed, for
example, when
calculating the
priority in a
combined
scheduling
algorithm.

 SimEvents Common Design Patterns

1-19

Design Pattern Description Input
Specifications

Output
Specifications

Application

Release entity
upon signal
value change

Releases an
incoming entity
when there is a
jump in the step
function.

Any entity type Inherited from
the input

Use to control
the passing of
entities based on
the change of a
function.

Open gate on
service
completion

Upon service
completion, the
gate opens and
releases an
entity.

Any entity type Inherited from
the input

Use task
completion to
trigger entity
processing.

Sense an entity
passing from A
to B and open a
gate

Passing an
entity from A to
B opens the gate
and releases an
entity.

Any entity type Inherited from
the input

Use to model the
passing of an
entity in one
route to control
the passing of
another route.

Select an entity
with a matching
attribute

Select entities to
advance whose
specified
attributes are
matching the
anonymous
entity at the
control port

A structured
entity or bus
object with a
specified
attribute

Inherited from
the input

Select entities
with a specified
attributes to
output

Discrete Event
Chart: Single
Server with
Pause

A Ctrl message
triggers pause of
service for the
incoming entity.
A second Ctrl
message
continues the
service. Entity
data conveys the
service time.

Ctrl —
Anonymous
entity specifying
the pause and
resume

Entity —
Anonymous
entity specifying
service time

Inherited from
the input

Use external
events or signals
to pause the
service of
entities.

1 Introduction

1-20

Design Pattern Description Input
Specifications

Output
Specifications

Application

Discrete Event
Chart: Single
Server with
Timeout

If the service
time (which is
random) exceeds
the timeout
limit specified
by the entity
data, the entity
leaves the
server.

Anonymous
entity with
specified
timeout limit

Inherited from
the input

Model:

• A protocol
that
explicitly
calls for
timeouts.

• Implementat
ion of special
routing or
other
handling of
entities that
exceed a time
limit.

• Entities that
represent
perishable
items.

Discrete Event
Chart: Custom
Output Switch

Randomly
routes entities
to one of the
three output
ports.

Anonymous
entity

Inherited from
the input

Implement a
more
complicated
routing
algorithm for an
output switch.

 SimEvents Common Design Patterns

1-21

Design Pattern Description Input
Specifications

Output
Specifications

Application

MATLAB
Discrete Event
System: Custom
Generator

The Custom
Generator block,
defined using
the MATLAB
Discrete Event
System block, is
a basic entity
generator. The
generator block
requires
specification of
generation
period.

Not applicable Anonymous
entity

Implement a
more
complicated
entity generator.

MATLAB
Discrete Event
System: Custom
Server

Custom Server
block, defined
using the
MATLAB
Discrete Event
System block, is
a basic entity
server. The
server block
requires
specification of
server number
and service
time.

Any entity type Inherited from
the input

Implement a
more
complicated
entity server.

1 Introduction

1-22

Design Pattern Description Input
Specifications

Output
Specifications

Application

MATLAB
Discrete Event
System:
Selection Queue

The Selection
Queue block,
defined using
the MATLAB
Discrete Event
System block,
stores entities of
bus type
passenger
arriving at the
IN port. Keys
from the call
port select
passenger
entities with the
matching
trainNum field
and send them
to the OUT port.

Key —
Anonymous
entity carrying
the selection key

IN — A
structured
entity or bus
object with
specified
attribute

Inherit from IN Select a specific
entity to output
from a queue.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Run Sample Models” on page 1-14

More About
• “Discrete-Event Simulation in Simulink Models” on page 1-3

 See Also

1-23

Build Simple Models with SimEvents
Software

• “Build a Discrete-Event Model” on page 2-2
• “Explore Simulation Results Using Plots” on page 2-10

2

Build a Discrete-Event Model

In this section...
“Open a Model and Library” on page 2-2
“Move Blocks into the Model Window” on page 2-3
“Configure Blocks” on page 2-4
“Connect Blocks” on page 2-7
“Run the Simulation” on page 2-7

This example describes how to build a new model representing a discrete-event system.
The system is a simple queuing system in which “customers” — entities — arrive at a
fixed deterministic rate, wait in a queue, and advance to a server that operates at a fixed
deterministic rate. This type of system is known as a D/D/1 queuing system in queuing
notation. The notation indicates a deterministic arrival rate, a deterministic service rate,
and a single server.

The example system shows how to perform basic model-building tasks, such as:

• Adding blocks to models
• Configuring blocks using their parameter dialog boxes

Open a Model and Library

The first steps in building a model are to set up your environment, open a new model on
page 2-2 window, and open the libraries on page 2-2 containing blocks.

Open a New Model Window

On the Home tab, select New > Simulink Model. An empty model window opens.

To name the model and save it as a file, select File > Save from the model window's
menu. Save the model in your working folder as dd1.

Open the SimEvents Library

In the MATLAB Command Window, enter

simevents

2 Build Simple Models with SimEvents Software

2-2

The main SimEvents library window appears. This window contains an icon for each
SimEvents library. To open a library and view the blocks it contains, double-click the
icon that represents that library.

Open Simulink Libraries

In the Simulink editor, click the Library Browser button. The Simulink Library Browser
opens, using a tree structure to display the available libraries and blocks. To view the
blocks in a library listed in the left pane, select the library name, and the list of blocks
appears in the right pane. The Library Browser provides access not only to Simulink
blocks but also to SimEvents blocks.

Move Blocks into the Model Window

To move blocks from libraries into the model window, follow these steps:

 Build a Discrete-Event Model

2-3

1 In the SimEvents library window, drag the Entity Generator block from the library
into the model window.

2 Drag the Entity Queue block into the model window.
3 Drag the Entity Server block into the model window.
4 Drag the Entity Terminator block into the model window.
5 From the Simulink Sinks library, drag the Scope block into the model window.

As a result, the model window contains blocks that represent the key processes in the
simulation: blocks that generate entities, store entities in a queue, serve entities, and
create a plot showing relevant data.

Configure Blocks
Each block in a model, in this case, dd1, has a dialog box that enables you to specify
block parameters. Default parameter values might or might not be appropriate,
depending on what you are modeling.

View Parameter Values

Two important parameters in the D/D/1 queuing system are the arrival rate and service
rate. The reciprocals of these rates are the duration between successive entities and the
duration of service for each entity. To examine these durations:

1 Double-click the Entity Generator block to open its dialog box. Observe and that the
Period parameter is set to 1. This means that the block generates a new entity
every second.

2 Double-click the Entity Server block to open its dialog box. Observe that the Service
time parameter is set to 1.0. This means that the server spends one second
processing each entity that arrives at the block.

3 Click Cancel in both dialog boxes to dismiss them without changing any
parameters.

2 Build Simple Models with SimEvents Software

2-4

The Period and Service time parameters have the same value, which means that the
server completes an entity's service at exactly the same time that a new entity is being
created.

Change Parameter Values

Configure blocks to create a plot that shows when each entity departs from the server,
and to make the queue have an infinite capacity.

1 Double-click the Entity Server block to open its dialog box.
2 Click the Statistics tab to view parameters related to the statistical reporting of the

block.
3 Select Number of entities departed, d.

 Build a Discrete-Event Model

2-5

Then click OK. The Entity Server block acquires a signal output port labeled d.
During the simulation, the block will produce an output signal at this d port; the
signal's value is the running count of entities that have completed their service and
departed from the server. You can connect a Scope block to this entity line and
display the statistics (running count of entities).

4 Double-click the Entity Queue block to open its dialog box.
5 Set the Capacity parameter to Inf and click OK.

The model window now contains blocks that represents key processes.

2 Build Simple Models with SimEvents Software

2-6

Connect Blocks

Connect the blocks as shown and save the dd1 model you have created.

SimEvents connects the source block to the destination block. If necessary, the software
also routes the connecting line around intervening blocks or lines.

Run the Simulation

To start the simulation, select Simulation > Run from the model window's menu.

Results of the Simulation

When the simulation runs, the Simulink Scope block opens a window containing a plot.
The horizontal axis represents the times at which entities depart from the server, while
the vertical axis represents the total number of entities that have departed from the
server.

 Build a Discrete-Event Model

2-7

After an entity departs from the Entity Server block, the block updates its output signal
at the d port.

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

2 Build Simple Models with SimEvents Software

2-8

Related Examples
• “Explore Simulation Results Using Plots” on page 2-10
• “Simulate a Hybrid System” on page 6-2

More About
• “What Is an Entity?” on page 1-7
• “Role of Entities in SimEvents Models” on page 3-2
• “What Is an Event?” on page 1-9
• “Storage” on page 3-13
• “Write Events Actions” on page 3-22
• “Statistics Through SimEvents Blocks” on page 4-2

 See Also

2-9

Explore Simulation Results Using Plots

In this section...
“Explore the D/D/1 System Using Plots” on page 2-10
“Visualize and Animate Simulations” on page 2-12
“Explore the System Using the Simulink Simulation Stepper” on page 2-13
“Information About Race Conditions and Random Times” on page 2-13

Explore the D/D/1 System Using Plots

The dd1 model that you created in “Build a Discrete-Event Model” on page 2-2 plots the
number of entities that depart from the server. This section modifies the model to plot
other quantities that can reveal aspects of the simulation. The topics are as follows:

• “View Statistics for Waiting Times and Utilization” on page 2-10
• “Observations from Plots” on page 2-11

View Statistics for Waiting Times and Utilization

The queue length is an example of a statistic that quantifies a state at a particular
instant. Other statistics, such as average waiting time and server utilization, summarize
behavior between simtime=0 and the current time. To modify the model so that you can
view the average waiting time of entities in the queue and server, as well as the
proportion of time that the server spends storing an entity, use the following procedure:

1 Double-click the Entity Queue block to open its dialog box. Click the Statistics tab,
set the Average wait parameter to On, and click OK. This causes the block to have
a signal output port for the signal representing the average duration that entities
wait in the queue. The port label is w.

2 Double-click the Entity Server block to open its dialog box. Click the Statistics tab,
set both the Average wait and Utilization parameters to On, and click OK. This
causes the block to have a signal output port labeled w for the signal representing
the average duration that entities wait in the server, and a signal output port
labeled u for the signal representing the proportion of time that the server spends
storing an entity.

3 Copy the Scope1 block and paste it into the model window.

2 Build Simple Models with SimEvents Software

2-10

4 Double-click the new copy to open its dialog box.
5 Copy the Scope2 block that you just modified and paste it into the model window

twice. You now have four scope blocks.

Each copy assumes a unique name. If you want to make the model and plots easier
to read, you can click the names underneath each scope block and rename the block
to use a descriptive name like Queue Waiting Time, for example.

6 Connect the u signal output port and the two w signal output ports to the in signal
input ports of the unconnected scope blocks by dragging the mouse pointer from port
to port.

7 Save the model.
8 Run the simulation with different values of the Period parameter in the Entity

Generator block. Look at the plots to see how they change if you set the
intergeneration time to 0.3 or 1.1, for example.

Note Scope blocks do not support bus objects. SimEvents software supports Scope blocks
with only single inputs.

Observations from Plots

• The average waiting time in the server does not change after the first departure from
the server because the service time is fixed for all departed entities. The average

 Explore Simulation Results Using Plots

2-11

waiting time statistic does not include partial waiting times for entities that are in
the server but have not yet departed.

• The utilization of the server is nondecreasing if the intergeneration time is small
(such as 0.3) because the server is constantly busy once it receives the first entity.

The utilization might decrease if the intergeneration time is larger than the service
time (such as 1.5) because the server has idle periods between entities.

• The average waiting time in the queue increases throughout the simulation if the
intergeneration time is small (such as 0.3) because the queue gets longer and longer.

The average waiting time in the queue is zero if the intergeneration time is larger
than the service time (such as 1.1) because every entity that arrives at the queue is
able to depart immediately.

Visualize and Animate Simulations

You can explore the following elements of a SimEvents model with these tools.
Items to Observe Visualization Tool
Statistics • Simulation Data Inspector

• Simulink To Workspace block
• Simulink Scope block
• Simulink Display block
• Simulink To File block
• Simulink dashboard blocks

Entities passing through
model

Entity animation Display > Message Animation
Step through Simulation Simulink Simulation Stepper
Custom animation Use SimEvents custom visualization API.

The Simulink Floating Scope does not support SimEvents models.

Simulation Data Inspector is a powerful and unified user interface for viewing both
entities and signal (for example, statistics) data. For more information, see “Inspect and
Analyze Simulation Results” (Simulink).

2 Build Simple Models with SimEvents Software

2-12

Animate Simulations

During simulation, animation provides visual verification that your model behaves as
you expect. Animation highlights active entities in a model as execution progresses. You
can control the speed of entity activity animation during simulation, or turn animation
off. In the Simulink editor, select Display > SimEvents Animation Menu, then select:

• Fast
• Medium
• Slow
• None

The Fast animation speed shows the active highlights at each time step. To add delay
with each time step, set the animation speed to Medium or Slow. To turn off animation,
in the Simulink editor, select Display > Message Animation > None.

Animation is disabled by default in SimEvents models.

Explore the System Using the Simulink Simulation Stepper

Simulation Stepper enables you to step through major time steps of a simulation. Use
this tool to explore your discrete-event system. For more information, see “Simulation
Stepper” (Simulink).

Information About Race Conditions and Random Times

You can vary the processing sequence for simultaneous events or make the
intergeneration times or service times random.

See Also
Entity Queue

Related Examples
• “Build a Discrete-Event Model” on page 2-2

 See Also

2-13

Key Concepts in SimEvents Software

• “Role of Entities in SimEvents Models” on page 3-2
• “Role of Entity Ports and Paths” on page 3-9
• “Storage” on page 3-13
• “Write Events Actions” on page 3-22

3

Role of Entities in SimEvents Models
In this section...
“Meaning of Entities in Different Applications” on page 3-2
“Vary the Interpretation of Entities” on page 3-2
“Data and Entities” on page 3-3
“Data and Signals” on page 3-3
“Introduction to Time-Based Entities” on page 3-3
“Role of Attributes in Models” on page 3-3
“Create Entities” on page 3-4

Entities are discrete items of interest in a discrete-event simulation. You determine what
an entity signifies, based on what you are modeling. For more information, see “What Is
an Entity?” on page 1-7.

SimEvents models typically contain at least one source block that generates entities.
Other SimEvents blocks in the model process the entities that the source block
generates.

Meaning of Entities in Different Applications
An entity represents an item of interest in a discrete-event simulation. The meaning of
an entity depends on what you are modeling. In this topic, examples use entities to
represent abstract customers in a queuing system and data packets from a remote
controller to an actuator on the system being controlled.

Entities do not have a graphical depiction in the model window the way blocks, ports,
and connection lines do.

Vary the Interpretation of Entities
A single model can use entities to represent different kinds of items. For example, if you
are modeling a factory that processes two different kinds of parts, you can:

• Use two Entity Generator blocks to create the two kinds of parts.
• Use one Entity Generator block and subsequently assign an attribute to indicate what

kind of part each entity represents.

3 Key Concepts in SimEvents Software

3-2

SimEvents entities are fundamentally the same as Stateflow messages.

Data and Entities

You can optionally attach data to entities. Such data is stored in one or more attributes
of an entity. You define names and numeric values for attributes. For example, if your
entities represent a message that you are transmitting across a communication network,
you might assign data called length that indicates the length of each particular
message. You can read or change the values of attributes during the simulation.

Data and Signals

In SimEvents models, signals carry persistent value-based information such as statistics
and states.

Introduction to Time-Based Entities

By default, the Entity Generator block creates time-based entities. Change the Time
Source parameter to select the time source for the entity generation. You can create
time-based entities using:

• The Period parameter value. For more information, see “Create a Time-based Entity”
on page 3-4.

• A signal port. You can then connect a Simulink source block, such as a Repeating
Sequence block, to the signal port. The time value cannot be a negative number.

• MATLAB code. For more information, see “Create Randomized Entities” on page 3-
5.

Role of Attributes in Models

You can optionally attach data to entities. Such data is stored in one or more attributes
of an entity. You define names and numeric values for attributes. For example, if entities
represent a message you are transmitting across a communication network, you might
also assign data called length that indicates the length of each particular message. You
can read or change the values of attributes during the simulation.

You can optionally specify the structure of an entity using a Simulink bus object. This
capability is useful when defining complex entity structures that need to be defined once,

 Role of Entities in SimEvents Models

3-3

but used in multiple locations in a model. In addition, the MATLAB Discrete-Event
System and Discrete Event Chart blocks require that you specify entities as bus objects.
For more information on bus objects, see “When to Use Bus Objects” (Simulink).

Create Entities
There are many ways to create entities. Two common ways are using a time-based
method, and using a random number generator.

Create a Time-based Entity

Use the Entity Generation block to create time-based entities. The Entity Generation lets
you specify a period at which it creates entities.

1 Open the SimEvents block library. You can use the Simulink browser or type
simevents at the MATLAB Command Window.

2 Create a new model.
3 From the SimEvents library, drag the Entity Generator block to the new model.
4 From the SimEvents library, drag the Entity Queue block to the new model.

• Connect the Entity Generator block to the input of the Entity Queue.
• In the Entity Queue block, select Number of entities departed, d.

5 From the Simulink Sinks library, drag a Scope block to the new model. Connect the
Scope block to the d port of the Entity Queue block.

6 From the SimEvents library, drag an Entity Terminator block to the new model.
Connect the output of the Entity Queue block to the input of the Entity Terminator
block.

Upon simulation, the scope displays the entities that depart the queue.

3 Key Concepts in SimEvents Software

3-4

Note You cannot connect a scope to a SimEvents line, as denoted by the thick double
arrow line.

Create Randomized Entities

Use the Entity Generation block to create time-based entities. The Entity Generation lets
you specify a randomization operation (such as the MATLAB rand function) to create
entities at random times.

1 Open the SimEvents block library. You can use the Simulink browser or type
simevents at the MATLAB Command Window.

2 Create a new model.
3 From the SimEvents library, drag the Entity Generator block to the new model.

 Role of Entities in SimEvents Models

3-5

a Double-click the block and set the Time source parameter to MATLAB action.
b In the Intergeneration time action parameter, enter a call to a randomizer

function, such as rand. For example:

dt = rand(1,1);

4 From the SimEvents library, drag the Entity Queue block to the new model.

• Connect the Entity Generator block to the input of the Entity Queue
• In the Entity Queue block, select Number of entities departed, d.

5 From the Simulink Sinks library, drag a Scope block to the new model. Connect the
Scope block to the d port of the Entity Queue block.

6 From the SimEvents library, drag an Entity Terminator block to the new model.
Connect the output of the Entity Queue block to the input of the Entity Terminator
block.

Upon simulation, the scope displays the entities that depart the queue.

3 Key Concepts in SimEvents Software

3-6

See Also
Composite Entity Creator | Composite Entity Splitter | Discrete Event Chart | Entity
Gate | Entity Generator | Entity Input Switch | Entity Multicast | Entity Output
Switch | Entity Queue | Entity Replicator | Entity Server | Entity Terminator |
MATLAB Discrete Event System | Multicast Receive Queue | Resource Acquirer |
Resource Pool | Resource Releaser

Related Examples
• “Generate Entities When Events Occur”
• “Specify Intergeneration Times for Entities”
• “Manipulate Entity Attributes”
• “Inspect Structures of Entities”

 See Also

3-7

More About
• “Entity Types”
• “Attribute Value Support”

3 Key Concepts in SimEvents Software

3-8

Role of Entity Ports and Paths
In this section...
“Entity Ports and Paths” on page 3-9
“Definition of Entity Paths” on page 3-9
“Implications of Entity Paths” on page 3-10
“Designing Paths Using Input, Output, and Entity Combiner Blocks” on page 3-11

Entity Ports and Paths
An entity output port provides a way for an entity to depart from a block. Conversely, an
entity input port provides a way for an entity to arrive at a block.

A connection line indicates a path along which an entity can potentially advance.
However, the connection line does not imply that any entities actually advance along
that path during a simulation. For a given entity path and a given time instant during
the simulation, any of the following could be true:

• No entity is trying to advance along that path.
• An entity has tried and failed to advance along that path. For some blocks, it is

normal for an entity input port to be unavailable under certain conditions. As a
result, the entity fails in its attempt to advance along that path, even though the path
is intact (that is, even though the ports are connected). An entity that tries and fails
to advance is called a pending entity.

• One or more entities successfully advance along that path. This occurs only at a
discrete set of times during a simulation.

Note The simulation could also have one or more times at which one or more entities
successfully advance along a given entity path. Simultaneously, one or more different
entities try and fail to advance along that same entity path. For example, an entity
departs from a queue and, simultaneously, the next entity in the queue tries and fails to
depart.

Definition of Entity Paths
An entity path is a connection from an entity output port to an entity input port, depicted
as a line connecting the entity ports of two SimEvents blocks. An entity path represents

 Role of Entity Ports and Paths

3-9

the equivalence between an entity's departure from the first block and arrival at the
second block. For example, in the model shown below, any entity that departs from the
Entity Queue block's output port equivalently arrives at the Entity Server block's input
port.

The existence of the entity path does not guarantee that any entity actually uses the
path. For example, the simulation could be so short that no entities are ever generated.
Even when an entity path is used, it is used only at a discrete set of times during the
simulation.

Implications of Entity Paths

In some models, you can use the entity connection lines to infer the full sequence of
blocks at which a given entity arrives, throughout the simulation.

In many discrete-event models, however, the set of entity connection lines does not
completely determine the sequence of blocks at which each entity arrives. This example
shows two queues in a parallel arrangement, preceded by a block that has one entity
input port and two entity output ports.

3 Key Concepts in SimEvents Software

3-10

By looking at the entity connection lines alone, you cannot tell which queue block's IN
port an entity will arrive at. Instead, you need to know more about how the one-to-two
block (Output Switch) behaves and understand the outcome of certain run-time
decisions.

Designing Paths Using Input, Output, and Entity Combiner Blocks
You design entity paths by choosing or combining entity paths using the Entity Input
Switch, Entity Output Switch, and Entity Combiner blocks of the SimEvents library.
These blocks have extra entity ports that let you vary the model's topology (that is, the
set of blocks and connection lines).

Typical reasons for manipulating entity paths are:

• To describe an inherently parallel behavior in the situation you are modeling — for
example, a computer cluster with two computers that share the computing load. You
can use the Entity Output Switch block to send computing jobs to one of the two
computers. You might also use the Entity Input Switch block if computing jobs share
a common destination following the pair of computers.

• To design nonlinear topologies, such as feedback loops — for example, repeating an
operation if quality criteria such as quality of service (QoS) are not met. You can use
the Entity Input Switch block with the Active port selection parameter set to All
to combine the paths of new entities and entities that require a repeated operation.

• To incorporate logical decision-making into your simulation — for example, to
determine scheduling protocols. You might use the Entify Input Switch block to
determine which of several queues receives attention from a server.

• To incorporate logic for activation or deactivation of an entity path, use the Entity
Gate block. For example, you can activate an entity path for one entity when a
condition is fulfilled in your model.

• To model routing of copies of an entity to multiple remote locations in the model,
consider using the Entity Multicast and Multicast Receive Queue blocks.

Other libraries in the SimEvents library set contain a number of blocks whose secondary
features, such as preemption from a server or timeout from a queue or server, give you
opportunities to design paths.

See Also
Entity Input Switch | Entity Output Switch

 See Also

3-11

Related Examples
• “Select Departure Path Using Entity Output Switch”
• “Select Arrival Path Using Entity Input Switch”
• “Combine Entity Paths”
• “Use Messages To Route Entities”

More About
• “Role of Paths in SimEvents Models”
• “Use Attributes to Route Entities”
• “Role of Gates in SimEvents Models”

3 Key Concepts in SimEvents Software

3-12

Storage
In this section...
“Queues and Servers” on page 3-13
“Behavior and Features of Queues” on page 3-13
“Physical Queues and Logical Queues” on page 3-14
“Queue Policies” on page 3-14
“Storage Actions” on page 3-14
“Behavior and Features of Servers” on page 3-16
“What Servers Represent” on page 3-16
“Common Server Use Cases” on page 3-17
“Constructs Involving Queues and Servers” on page 3-17
“Broadcast Entities Using Multicast Mode” on page 3-18
“Entity Resources” on page 3-20

Queues and Servers

Queue and server blocks are storage blocks that hold entities.

• Queues order entities and sort them according to queue policies.
• Servers delay entities until certain conditions are met.

Behavior and Features of Queues

In a discrete-event simulation, a queue stores entities for a length of time that cannot be
determined in advance. The queue attempts to output entities as soon as it can, but its
success depends on whether the next block accepts new entities. An everyday example of
a queue is when you stand in a line with other people to wait for some type of service to
address your needs and you cannot determine in advance how long you must wait.

Distinguishing features of different queues include:

• Capacity — The number of entities the queue can store simultaneously
• Discipline — A feature determines which entity departs first if the queue stores

multiple entities

 Storage

3-13

Physical Queues and Logical Queues

In some cases, a queue in a model is similar to an analogous aspect of the real-world
system being modeled. This kind of queue is sometimes called a physical queue. For
example, you might use a queue to represent a sequence of:

• People standing in line
• Airplanes waiting to access a runway
• Messages waiting to be sent
• Parts waiting to be assembled in a factory
• Computer programs waiting to be executed

In other cases, a queue in a model does not arise in an obvious way from the real-world
system but instead is included for modeling purposes. This kind of queue is sometimes
called a logical queue. For example, you might use a queue to provide a temporary
storage area for entities that might otherwise have nowhere to go. Such use of a logical
queue can prevent deadlocks or simplify the simulation.

Use the Entity Queue block to model queues.

Queue Policies

The Entity Queue block uses these queue policies:

• FIFO — The block processes the entity as first in first out.
• LIFO — The block processes the entity as last in first out.

• Priority — The block reads the priority from the Priority Source parameter. This
parameter is a particular attribute value that the block stores based on the value of
the number.

Storage Actions

Storage blocks have event actions based on events influencing entities in the
corresponding storage blocks. Each block has a set of actions particular to the block.

3 Key Concepts in SimEvents Software

3-14

Entity Generator Entity Queue Entity Server Entity Terminator Resource
Acquirer

Entity
generation

Entity entry to
queue block

Entity entry to
server block

Entity entry to
terminator block

Entity entry to
acquirer block

Entity exit from
block

Entity exit from
block

Service
completion of
entity

N/A Entity exit from
acquirer block

N/A Entity is blocked Entity exit from
block

N/A N/A

N/A N/A Entity is blocked N/A N/A
N/A N/A Entity is

preempted
N/A N/A

This illustration shows the flow of actions as entities move through a discrete-event
system simulation.

Notes:

• Entity entry, exit, and blocking actions are performed as part of an entity forward
event.

• Service completion action is performed following a timer event.
• Entity termination event performs a destruction action.

For more information on event actions, see “Events and Event Actions”.

 Storage

3-15

Behavior and Features of Servers

In a discrete-event simulation, a server stores entities for a length of time, called the
service time, and then attempts to output the entity. During the service period, the block
is said to be serving the entity that it stores. An everyday example of a server is a person
(a bank teller, a retail cashier, etc.) with whom you perform a transaction with a
projected duration.

The service time for each entity is computed when it arrives, which contrasts with the
inherent unknowability of the storage time for entities in queues. If, however, the next
block does not accept the arrival of an entity that has completed its service, the server is
forced to hold the entity longer.

Distinguishing features of different servers include:

• The number of entities it can serve simultaneously, which could be finite or infinite
• Characteristics of, or the method of computing, the service times of arriving entities
• Whether the server permits certain arriving entities to preempt entities that are

already stored in the server

Tip In the absence of preemption, a finite-capacity server does not accept new arrivals
when it is already full. You can place a queue before each finite-capacity server,
establishing a place for entities to stay while they are waiting for the server to accept
them. Otherwise, the waiting entities might be stored in various different locations in the
model and the situation might be more difficult for you to predict or analyze.

What Servers Represent

In some cases, a server in a model is similar to an analogous aspect of the real-world
system being modeled. For example, you might use a server to represent:

• A person (such as a bank teller) who performs a transaction with each arriving
customer

• A transmitter that processes and sends messages
• A machine that assembles parts in a factory
• A computer that executes programs

3 Key Concepts in SimEvents Software

3-16

Servers Inserted for Modeling Purposes

In some cases, a server in a model does not represent a real-world system. A common
modeling technique involves a delay of duration zero, that is, an infinite server whose
service time is zero, to provide a place for an entity to reside to manipulate its attributes.

Use the Entity Server block to model queues.

Common Server Use Cases

Common server use cases of a server include:

• In a production line application, the processing unit
• In a network application, the processor

Constructs Involving Queues and Servers

You can combine Entity Queue and Entity Server blocks to model different situations:

• “Serial Queue-Server Pairs” on page 3-17
• “Parallel Queue-Server Pairs as Alternatives” on page 3-18
• “Parallel Queue-Server Pairs in Multicasting” on page 3-18
• “Serial Connection of Queues” on page 3-18
• “Parallel Connection of Queues” on page 3-18

Serial Queue-Server Pairs

Two queue-server pairs connected in series represent successive operations that an
entity undergoes. For example, parts on an assembly line are processed sequentially by
two machines.

You can alternatively model the situation as a pair of servers without a queue between
them. However, the absence of the queue means that if the first server completes service
on an entity before the second server is available:

• The entity must stay in the first server past the end of service.
• The first server cannot accept a new entity for service until the second server becomes

available.

 Storage

3-17

Parallel Queue-Server Pairs as Alternatives

Two queue-server pairs connected in parallel, in which each entity arrives at one or the
other, represent alternative operations. For example, vehicles wait in line for one of
several tollbooths at a toll plaza. In this case, the model must have decision logic,
possibly in the form of a switch preceding this pattern.

Parallel Queue-Server Pairs in Multicasting

Two queue-server pairs connected in parallel, in which a copy of each entity arrives at
both, represent a multicasting situation such as sending a message to multiple
recipients. Note that copying entities might not make sense in some applications.

Serial Connection of Queues

Two queues connected in series might be useful if you are using entities to model items
that physically experience two distinct sets of conditions while in storage. For example,
additional inventory items that overflow one storage area have to stay in another storage
area in which a less well-regulated temperature affects the items’ long-term quality.
Modeling the two storage areas as distinct queue blocks facilitates viewing the average
length of time that entities stay in the overflow storage area.

Parallel Connection of Queues

Two queues connected in parallel, in which each entity arrives at one or the other,
represent alternative paths for waiting. The paths might lead to different operations,
such as a line of vehicles waiting for a tollbooth and a line of vehicles waiting on a
jammed exit ramp of the freeway. You might model the tollbooth as a server and the
traffic jam as a gate.

Broadcast Entities Using Multicast Mode

Multicast mode enables multiple queues to receive entities from one Entity Multicast
block. The receiving block for an Entity Multicast blocks is a Multicast Receive Queue
block whose Tag parameters have the same value. The Multicast Receive Queue block is
essentially the Entity Queue block with the Entity Arrival source parameter set to
Multicast.

Using the Entity Multicast block requires no connecting lines. The Tag parameters just
need to match.

3 Key Concepts in SimEvents Software

3-18

1 From the SimEvents library, drag the Entity Multicast and Multicast Receive Queue
blocks.

2 In both dialog boxes, in the Multicast tag parameters, enter the same text. For
example, A.

The software uses these tags to match the broadcaster and broadcastees.

This is example shows entities broadcast to two queues. Notice that the FIFO blocks for
both queues have the A tag.

 Storage

3-19

Entity Resources

Resources are commodities shared by entities in your model. They are independent of
entities and attributes, and can exist in the model even if no entity exists or uses them.
Resources are different from attributes, which are associated with entities and exist or
disappear with their entity.

For example, if you are modeling a restaurant, you can create tables and food as
resources for customer entities. Entities can access resources from types of resources. For
more information on resources, see “Model with Resources”.

See Also
Entity Multicast | Entity Queue | Entity Server | Multicast Receive Queue | Resource
Acquirer | Resource Pool | Resource Releaser

3 Key Concepts in SimEvents Software

3-20

Related Examples
• “Model Basic Queuing Systems”
• “Model with Resources”

More About
• “Events and Event Actions”

 See Also

3-21

Write Events Actions
You can write actions for events using MATLAB code or Simulink functions. Each block
that enables you to create actions has an Event Actions tab. The type of event action
you can write depends on the block. For example, for the Entity Queue block you can
create event actions for:

• Entity entry to the block
• Exit from the block
• Blocked entities

3 Key Concepts in SimEvents Software

3-22

In the actions, entities are available as MATLAB structures, with structure fields
representing values of the entity attributes. Reserved fields such as ID and priority
are also available as a separate MATLAB structure called entitySys.

When you create an action for the block, a badge appears to indicate that an action
exists. One or more badges appear, depending on the action.

Hover over the badge to see what actions exist.

Double-clicking the badge opens the Event actions tab of the block.

As you define an action, an asterisk (*) appears in the Event actions tab.

For more information on defining event actions, see “Events and Event Actions”.

See Also
Entity Generator | Entity Queue | Entity Replicator | Entity Server | Entity
Terminator | Multicast Receive Queue

Related Examples
• “Generate Entities When Events Occur”
• “Run Computations on Events”

More About
• “Events and Event Actions”

 See Also

3-23

Inspect Statistics

• “Statistics Through SimEvents Blocks” on page 4-2
• “Count Entities” on page 4-5

4

Statistics Through SimEvents Blocks
The report of statistics is an important part of the SimEvents blocks. Statistics you are
most likely to want to see are:

• Server blocks

• Utilization, average number of entities being served.
• Server and other blocks

• Number of entities departing the block.
• Average wait time of entities in the block.

Many SimEvents blocks have a Statistics tab, from which you can select the relevant
statistic.

4 Inspect Statistics

4-2

When you request a statistic for a block, the output ports for the block extend from the
top of the block, with a label for each port. The Entity Queue can display:

• Number of entities departed
• Number of entities in the block
• Average wait time of the entities

 Statistics Through SimEvents Blocks

4-3

• Average queue length of entities

To display the statistics, connect a display block, such as a Simulink Scope block, to the
statistic output port.

See Also
Entity Queue

Related Examples
• “Count Entities” on page 4-5
• “Explore Simulation Results Using Plots” on page 2-10
• “Access Statistics from SimEvents Blocks”
• “Count Simultaneous Departures from a Server”

More About
• “Use Statistics to Understand SimEvents Models”

4 Inspect Statistics

4-4

Count Entities
In this section...
“Count Departures Across the Simulation” on page 4-5
“Count Departures per Time Instant” on page 4-5
“Reset a Counter upon an Event” on page 4-5
“Associate Each Entity with Its Index” on page 4-6

Using statistics, you can count entities across the simulation and per time instant.

Count Departures Across the Simulation

Use the d or a output from a block to learn how many entities have departed (or arrived
at) the block. The output signal also indicates when departures occurred. This method of
counting is cumulative throughout the simulation.

Count Departures per Time Instant

Suppose you want to visualize entity departures from a particular block, and you want to
reset (that is, restart) the counter at each time instant. Visualizing departures per time
instant can help you:

• Detect simultaneous departures
• Compare the number of simultaneous departures at different time instants
• Visualize the departure times while keeping the plot axis manageable

For an example of counting simultaneous departures from a server, see “Count
Simultaneous Departures from a Server”.

Reset a Counter upon an Event

Suppose you want to count entities that depart from a particular block, and you want to
reset the counter at arbitrary times during the simulation. Resetting the counter can
help you compute statistics for evaluating your system over portions of the simulation.

During the simulation, the block counts departing entities and resets its counter
whenever the input signal satisfies your specified event criteria.

 Count Entities

4-5

Associate Each Entity with Its Index

To associate an entity with its index, in the initialization section of the Entity Generator
block, you can associate an entity with its generation time:

1 Use a Simulink Function block with a clock block, such as Digital Clock, to create a
Simulink function.

This function returns the current time.
2 In the Entity Generator block, create an attribute and associate it with the current

time that the Simulink function returns.

For an example, see Time stamp entities upon generation in the SimEvents Design
Patterns sublibrary.

See Also
Entity Queue

Related Examples
• “Explore Simulation Results Using Plots” on page 2-10
• “Access Statistics from SimEvents Blocks”
• “Count Simultaneous Departures from a Server”

More About
• “Statistics Through SimEvents Blocks” on page 4-2

4 Inspect Statistics

4-6

Create Discrete Event Systems Using
MATLAB and Stateflow Software

5

Custom Discrete Event Systems
The MATLAB Discrete Event System block and Discrete Event Chart block create
SimEvents custom blocks.

• MATLAB Discrete Event System — Extends System objects to create custom
SimEvents blocks in your model. This capability is useful for including algorithms.

• Discrete Event Chart — Uses Stateflow charts and messages to create custom blocks
in your model. This capability is useful for creating application-oriented blocks and
add-on software. Examples of such software are real-time operating system schedules
and communication networks.

Note With just SimEvents and its required software, you can implement your Discrete
Event Chart custom block. However, to simulate the model you must have a Stateflow
license.

See Also
Discrete Event Chart | MATLAB Discrete-Event System

More About
• “Discrete-Event Systems Created with Stateflow Charts”
• “How Discrete-Event Charts Differ from Stateflow Charts”
• “SimEvents Common Design Patterns” on page 1-18
• “System Object Integration” (Simulink)

5 Create Discrete Event Systems Using MATLAB and Stateflow Software

5-2

Simulate Multidomain Models

6

Simulate a Hybrid System

In this section...
“SimEvents Part of Model” on page 6-2
“Simulink Part of Model” on page 6-3
“Run the Hybrid Model” on page 6-4
“Event-Based and Time-Based Dynamics in the Simulation” on page 6-5

The seExampleTankFilling model incorporates both time-based and event-based
modeling. It models tanks queuing up to be filled.

The seExampleTankFilling example has two sections, a SimEvents part that models
event-based behavior and a Simulink part that models continuous-time dynamics.

SimEvents Part of Model

The SimEvents part models the flow of tanks.

6 Simulate Multidomain Models

6-2

matlab:showdemo('seExampleTankFilling')

• The Entity Generator block generates the tanks.
• The Entity Queue block queues each tank in FIFO mode.
• The Entity Server block calls the startFilling Simulink function to fill each tank.

Simulink Part of Model

The Simulink part models the time-driven process of filling tanks.

• The Simulink side of the model contains the logic to fill the tanks.
• Each tank has a Capacity attribute. The continuous time part models the process of

filling up a tank, modeled by the Integrator block. When a tank is filled to capacity,
the Entity Gate block releases the tank and it departs.

• The Simulink side of the model also contains the Simulink function startFilling.
• The Flip Completion Logic subsystem completes the filling of the tank and

reinitializes for the next fill. It uses the Entity Gate block to release each tank.

 Simulate a Hybrid System

6-3

Run the Hybrid Model

Run the seExampleTankFilling model. In the first scope, observe the fill process.

In the second scope, observe the number of trucks leaving after being filled.

6 Simulate Multidomain Models

6-4

matlab:showdemo('seExampleTankFilling')

Event-Based and Time-Based Dynamics in the Simulation

In the seExampleTankFilling model, the time-based dynamics of the tank fill coexist
with the event-based dynamics of the tank flow subsystem. When you run the
simulation, the solver and the event calendar both play a role. Upon major time steps of
the solver, the simulation solves the ordinary differential equations that represent the
dynamics of the tank fill system. Solving the event-based dynamics entails scheduling
and processing events, such as service completion and entity generation, on the
SimEvents event calendar. Because the model uses a variable-step solver, when events
occur in the discrete-event system, the solver has a major time step.

See Also
Entity Server | Entity Generator | Entity Queue

More About
• “Discrete-Event Simulation in Simulink Models” on page 1-3
• “Solvers for Discrete-Event Systems”

 See Also

6-5

Selected Bibliography

[1] Banks, Jerry, John Carlson, and Barry Nelson. Discrete-Event System Simulation,
Second Ed. Upper Saddle River, N.J.: Prentice-Hall, 1996.

[2] Cassandras, Christos G. Discrete Event Systems: Modeling and Performance Analysis.
Homewood, Illinois: Irwin and Aksen Associates, 1993.

[3] Cassandras, Christos G., and Stéphane Lafortune. Introduction to Discrete Event
Systems. Boston: Kluwer Academic Publishers, 1999.

[4] Fishman, George S. Discrete-Event Simulation: Modeling, Programming, and
Analysis. New York: Springer-Verlag, 2001.

[5] Gordon, Geoffery. System Simulation, Second Ed. Englewood Cliffs, N.J.: Prentice-
Hall, 1978.

[6] Kleinrock, Leonard. Queueing Systems, Volume I: Theory. New York: Wiley, 1975.

[7] Law, Averill M., and W. David Kelton. Simulation Modeling and Analysis, 3rd Ed.
New York: McGraw-Hill, 1999.

[8] Moler, C. “Floating points: IEEE Standard unifies arithmetic model,” Cleve's Corner.
The MathWorks, Inc., 1996. http://www.mathworks.com/company/newsletters/
news_notes/pdf/Fall96Cleve.pdf.

[9] Watkins, Kevin. Discrete Event Simulation in C. London: McGraw-Hill, 1993.

[10] Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems. Second Ed. San Diego: Academic Press, 2000.

7

http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

